45 research outputs found

    Persistent organic pollutants have dose and CAG repeat length dependent effects on androgen receptor activity in vitro.

    Get PDF
    Recently, the effect of exposure to persistent organic pollutants (POPs) on sperm concentration was only seen in men with a short androgen receptor (AR) gene CAG repeat. In order to investigate whether these effects could be observed also in vitro, we tested the impact of 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153) and 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4'-DDE) on 5α-dihydrotestosterone activated ARs containing 16, 22 and 28 CAG repeats, respectively. Single exposure to 4,4'-DDE had the most pronounced effect on the AR activity containing 16 CAG repeats, whereas 28 CAG was the most sensitive variant when a mixture of the two compounds was added. Thus, our in vitro results have confirmed the in vivo data indicating a CAG repeat length dependent effect of endocrine disrupters on the AR activity

    BCO-DMO Quick Guide

    Get PDF
    BCO-DMO, a repository funded by the National Science Foundation (NSF), supports the oceanographic research community’s data needs throughout the entire data life cycle. This guide describes the services available from BCO-DMO from proposal to preservation and highlights phases where researchers engage significantly with the office.Curating and providing open access to research data is a collaborative process. This process may be thought of as a life cycle with data passing through various phases. Each phase has its own associated actors, roles, and critical activities. Good data management practices are necessary for all phases, from proposal to preservation.NSF #143557

    Biological & Chemical Oceanography Data Management Office : a domain-specific repository for oceanographic data from around the world [poster]

    Get PDF
    Presented at AGU Ocean Sciences, 11 - 16 February 2018, Portland, ORThe Biological and Chemical Oceanography Data Management Office (BCO-DMO) is a domain-specific digital data repository that works with investigators funded under the National Science Foundation’s Division of Ocean Sciences and Office of Polar Programs to manage their data free of charge. Data managers work closely with investigators to satisfy their data sharing requirements and to develop comprehensive Data Management Plans, as well as to ensure that their data will be well described with extensive metadata creation. Additionally, BCO-DMO offers tools to find and reuse these high-quality data and metadata packages, and services such as DOI generation for publication and attribution. These resources are free for all to discover, access, and utilize. As a repository embedded in our research community, BCO-DMO is well positioned to offer knowledge and expertise from both domain trained data managers and the scientific community at large. BCO-DMO is currently home to more than 9000 datasets and 900 projects, all of which are or will be submitted for archive at the National Centers for Environmental Information (NCEI). Our data holdings continue to grow, and encompass a wide range of oceanographic research areas, including biological, chemical, physical, and ecological. These data represent cruises and experiments from around the world, and are managed using community best practices, standards, and technologies to ensure accuracy and promote re-use. BCO-DMO is a repository and tool for investigators, offering both ocean science data and resources for data dissemination and publication.NSF #143557

    Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus

    Get PDF
    Elevated serum urate levels, a complex trait and major risk factor for incident gout, are correlated with cardiometabolic traits via incompletely understood mechanisms. DNA methylation in whole blood captures genetic and environmental influences and is assessed in transethnic meta-analysis of epigenome-wide association studies (EWAS) of serum urate (discovery, n = 12,474, replication, n = 5522). The 100 replicated, epigenome-wide significant (p < 1.1E–7) CpGs explain 11.6% of the serum urate variance. At SLC2A9, the serum urate locus with the largest effect in genome-wide association studies (GWAS), five CpGs are associated with SLC2A9 gene expression. Four CpGs at SLC2A9 have significant causal effects on serum urate levels and/or gout, and two of these partly mediate the effects of urate-associated GWAS variants. In other genes, including SLC7A11 and PHGDH, 17 urate-associated CpGs are associated with conditions defining metabolic syndrome, suggesting that these CpGs may represent a blood DNA methylation signature of cardiometabolic risk factors. This study demonstrates that EWAS can provide new insights into GWAS loci and the correlation of serum urate with other complex traits

    Meta-analyses identify DNA methylation associated with kidney function and damage

    Get PDF
    Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    Study of ordered hadron chains with the ATLAS detector

    Get PDF
    La lista completa de autores que integran el documento puede consultarse en el archivo

    A search for resonances decaying into a Higgs boson and a new particle X in the XH→qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (HH) and a new particle (XX) is reported, utilizing 36.1 fb1^{-1} of proton-proton collision data at s=\sqrt{s} = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle XX is assumed to decay to a pair of light quarks, and the fully hadronic final state XHqqˉbbˉXH \rightarrow q\bar q'b\bar b is analysed. The search considers the regime of high XHXH resonance masses, where the XX and HH bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XHXH mass versus XX mass is scanned for evidence of a signal, over a range of XHXH resonance mass values between 1 TeV and 4 TeV, and for XX particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XHXH and XX masses, on the production cross-section of the XHqqˉbbˉXH\rightarrow q\bar q'b\bar b resonance

    Slow slip source characterized by lithological and geometric heterogeneity

    Get PDF
    Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust
    corecore